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Baxter states in the XY model 

R B Jones 
Department of Physics, Queen Mary College, University of London, Mile End Road, 
London El 4NS. UK 

Received 7 February 1973 

Abstract. The Baxter diagonalization of the X Y Z  hamiltonian is considered in the special 
case of the X Y  model. For this particular model the normalization properties of the basic 
Baxter states are obtained showing that the Baxter families form an overcomplete set of 
states. After choosing a simple subset of states which is complete, Bethe-type eigenstates of 
the X Y  hamiltonian are formed explicitly. By fixing a free parameter in Baxter’s states 
an operator expression for these states is obtained. The X Y  hamiltonian is then diagonalized 
in terms of fermion operators closely related to the quasiparticle operators of the standard 
solution due to Lieb, Schultz, and Mattis. Finally relations are given expressing the Baxter 
states in terms of the standard quasiparticle states of this model. 

1. Introduction 

In a recent series of papers Baxter (1973) has obtained the eigenvectors and eigenvalues 
both of the transfer matrix for the eight-vertex model in lattice statistics and of the 
X Y Z  hamiltonian for a one-dimensional anisotropic Heisenberg chain of spins f . 
The X Y Z  hamiltonian may be written in the form 

where cl!, 07 are the usual Pauli matrices with periodic boundary conditions o ~ + ~  = c j  
and we assume the number N of spins to be even. Baxter shows that it is convenient 
to parametrize r and A in terms of Jacobi elliptic functions of modulus k as 

r = k sn2(2q, k) ,  

A = cn(2q, k) dn(21, k) .  

In subsequent considerations we will work only in the regime defined by the condition 
0 < k < 1. If there exist integers L, m ,  , and m2 such that 

Lq = 2m,K+im,K’, (1.3) 
(where K and K‘ are the complete elliptic integrals of the first kind of modulus k and 
complementary modulus k‘ = (1 - k2)’I2 respectively) then Baxter (1973) gives a 
complete set of eigenvectors for Xx,,. 

Baxter’s work contains as special cases many previously solved models. It is of 
interest to examine Baxter’s solution in these special cases not only to see if it sheds 
new light on these old problems but also to try to better understand in a simple case the 
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rather complicated states Baxter has introduced in his diagonalization of XxYz. In 
particular, the X Y model together with several previously solved problems in lattice 
statistics (Baxter 1973) corresponds to taking L = 4in (1.3). The simplest of several 
ways to obtain the XY model is to choose L = 4, m, = 1, m, = 0 (J G Valatin, private 
communication). This choice corresponds to 

= i K ,  r = k,  A = 0. (1.4) 
We then have the XY hamiltonian in the form 

N 

= -3 q , j + 1 ,  

(1.5) 
j =  1 

q,j+ = (07 o,:+ + OJ o;+ 1) + k(of o;+ + 0,: o,:+ l). 

There is a familiar diagonalization of Xxy in which it is transformed into the 
hamiltonian of a system of non-interacting fermions (Lieb et a1 1961). However, Baxter’s 
solution (Baxter 1973) is a Bethe-type solution (Bethe 1931) for the wavefunctions of 
Xxy, and it is interesting to ask how the Baxter wavefunctions are related to the states 
of the operator diagonalization. We shall see below how Baxter’s wavefunctions are 
constructed out of an overcomplete set of basis vectors in the 2N dimensional space W 
in which .Xx, acts. The overcompleteness gives great freedom in selecting a complete 
subset of states with which to diagonalize exY. We show how a simple choice of Baxter 
states leads again to an operator diagonalization of Xxy, but in terms of operators 
slightly different from the fermion operators of the standard solution (Lieb et a1 1961). 
In obtaining this result we will also see how the excited states of the standard solution 
with many fermions present correspond to superpositions of the Baxter states with 
various numbers of Baxter’s ‘spins’ flipped. 

Thus in 5 2  we introduce the Baxter families of states to be used as a basis in the 
spin space Wand collect various simple properties of them. In 9 3 we choose a subset of 
the Baxter families in order to construct eigenstates of XxY by the Bethe ansatz method. 
In 0 4 we find operator expressions for the states of the Baxter families. In 9 5 we diagonal- 
ize Xxy in terms of fermion operators closely related both to the Baxter states and to 
the conventional quasiparticle operators (Lieb et a1 1961). Finally in 0 6 we give some 
relations between the Baxter states and the states of the usual quasiparticle solution. 

2. Baxter families of vectors 

Baxter (1973) has introduced some remarkable families of vectors in the 2N dimensional 
space W of the XYZ model. Each vector in these families depends upon two free 
parameters s and t as well as upon the parameter U used by Baxter to parametrize the 
eight-vertex transfer matrix (Baxter 1972a). A suitable adjustment of s and t enables 
one to put these vectors in a form independent of U but still dependent upon s and t 
(Baxter 1973). As mentioned by Baxter (1973) the dependence upon s and t reflects a 
kind of degeneracy because as these parameters are varied each of Baxter’s eigenvectors 
moves through a subspace of the 2N dimensional space W. 

In what follows it is much simpler to work with these Baxter vectors if we fix the 
parameter t relative to s but still leave s free. If we do this, we can introduce the Baxter 
families for the.XY model in the following straightforward manner. Define 

p(1, s) = $ sn(s + lK, k),  (2.1) 
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where sn is one of the Jacobi elliptic functions (Whittaker and Watson 1965) of modulus 
k,  1 is an integer, and s is a free parameter. On each spin site j define an orthonormal pair 
of two-component spinors by 

In Baxter’s terminology qI,[+ and ql,[- are respectively up arrows and down arrows 
(Baxter 1973). This pair of spinors is orthonormal only because we have fixed Baxter’s 
parameter t. The fact that the spinors are orthonormal means that they do describe 
‘spins’, but ‘spins’ that are up and down with respect to an axis rotated with respect to 
the z axis specified by the 0: operator on sitej. The parameters is free, but it is convenient 
henceforth to assume it is real in order that the spinors (2.2) are real. Now define direct 
product states in the 2N dimensional space W by (Baxter 1973) 

(2.3) $ 4 ~ 1 ~ ~ 2 ~ * . . ~  IN, 1N+1) = ( P t l , I z O q p I z , ~ J  . . . O q I N - l . I N O q I N , I N + , ’  

where t-he sequence of integers l j  is constrained to satisfy 

l j+,  = ljf 1, lN+ , = 1, +rL,  

with r an integer and L = 4. We shall see below that in fact the lj are defined only 
modulo L, hence I N +  , = I ,  + rL is a kind of periodic boundary condition. Such a 
condition is essential in order that each of Baxter’s families of states should be closed 
under the action of Hxr. In the state (2.3) we have an up or a down ‘spin’ on each site 
but with respect to an axis which rotates through differing angles as we go from site to 
site. 

Denote by n the number of down ‘spins’ which occur in the product state $. Then 
we have that 

l N + ,  = ll+N-2n, (2.5) 

n = 3N-2r. (2.6) 

and, because of (2.4), that 

Thus, if3N is even, n takes the even values 0,2,4, .  . . , N, while, if3N is odd, n takes odd 
values 1 , 3 , 5 , .  . . , N - 1. Let xi, i = 1,2, . . . , n denote the sites of the chain where the 
n down ‘spins’ occur. Writing 1 = 1, we may denote (2.3) by 

$(11,1,, * 9 IN+,) = $41; ~ 1 ,  ~ 2 , .  . > Xn), (2.7) 
where 

l < x ,  < x 2 < x 3 . . . < x , < N N ,  

and 

l j  = l + j - 1  

l j  = l+j-1-2i 

l j  = l+j-1-2n for x, j .  

for j < xl, 

for xi < j < xi+ ,, 
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The simplest such state is the n = 0 state, 

$ ( I )  = c ~ i , r +  1 @ ‘ P I  + I , (+  2 . + . @VI+ N - I , I + N .  (2.9) 

It is a simple property of the sn function that p(I + 2, s) = -p(I ,  s). Hence there are only 
four distinct pairs of spinors (2.2) possible on each site corresponding to l j  = 1,2, 3,4. 
It immediately follows from (2.7) and (2.8) that 

$(1+4; x 2 3  . . . , x,)  = $ ( I ;  x 2 , .  . ., (2.10) 

(2.11) 

An important operator which commutes with XXy is 

U = a:a;. . .a;. 

Let us ask what effect U has on the Baxter states $ introduced above. First note that 
on site j we have 

qPIjJ j+ l  = - - ( P l j + 2 , l j + 3 ,  

qcPIj,lj- 1 = ‘ p l j + 2 , 1 j +  1 

(2.12) 

From this result we see at once that 

U$(I; X l ,  x 2 , .  . . , x,) = ( -  1)”$(1+2; x l ,  x 2 , .  . . ; x,).  (2.13) 

Defining projection operators P+ which commute with Hxy by 

P* = + ( 1  k U) ,  (2.14) 

we see that 

P + $ ( I ; X 1 7 . . . , ~ n )  = + { $ ( I ; x ~  , . . . ,  ~ , ) + ( - l ) ” $ ( l + 2 ; ~ ~  ,..., x,)} .  (2.15) 

The states $ for I and I + 2 have simple normalization properties. As shown in appendix 1 
we have 

( $ ( I ; X 1 ~ ~ 2 ~ * . . ~ X n ) 7  $ ( I ;  Y l , y 2 , * . * , y m ) )  = 8n,mdxl,y16y2,y2* * * 6 x n , y m ,  (2.16) 

The scalar product between states for I and I + 1 is not so simple. 
From (2.16) with I fixed and n taking the values allowed by (2.6) we see that there 

are 2N-1 orthonormal vectors $ ( I ;  x l ,  x 2 , .  . . , x,). As I = 1,2 ,3 ,4  we generate 2N+1 
vectors, an overcomplete set. From (2.17) it is clear that so long as k # 0 we may choose 
the 1 odd states only ( I  = 1,3)  or the I even states only ( I  = 2,4) in order to get a complete 
set of 2N independent vectors in W. Of course there are many other ways to pick 2N 
independent states out of the available 2N+1 states. But if we want to diagonalize both 
Xxy and P+ , then either the odd 1 or even I states are the obvious choice. This choice is 
convenient also because if Hx, is applied to $ ( I ;  xl, . . . , X J ,  then either the value of 1 is 
unchanged or shifted by two. Thus Xxy acting on the set of I odd (even) states gives 
back the set of 1 odd (even) states. One way to see this is to use Baxter’s relation between 
XxYz and the logarithmic derivative of the eight-vertex transfer matrix (Baxter 1972b) 
together with Baxter’s equation expressing the action of the transfer matrix on the state 
$( l ;  xl,.  . . , x,) (Baxter 1973). A more direct way to see this is to note that in (1.5) we 
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have expressed Xxy as 
spin sites. In appendix 
sites j and j + 1 is given 

a sum of operators Xj,j+l which act only on pairs of adjacent 
1 we show that the effect of Xj,j+l upon the pair of spinors at 

by the following set of equations : 

(2.184 

A(1, s) = k sn(2s + 21K), 

B(1, s) = $cn(s+lK)dn(s+lK)/(1+p2(1, s)), 

(2.194 

(2.19b) 

C(l, s) = (1  + k) ( l  - p2(L s))l(l +P2(L SI). (2.194 

Some contemplation shows that, after summing q,,+ over all sites to obtain the effect 
of Xxy upon I,+(/; x l ,  , . . , x,,), the terms involving B(I, s) cancel out leaving a result 
dependent upon the coefficients A(l, s) and C(1, s). From (2.18) one sees explicitly that 
when Xxy acts upon $ ( l ;  x l ,  . . . , x,J the number n of down 'spins' is conserved and the 
individual x, may be changed to x ,k  1. 

As an example, suppose $V is odd so that there are Baxter states with n = 1. For 
such states one sees from (2.18) that 

Xxy#(l;xl)  = A(l+x,,s)@(l; xl)-+c(l+xl,s)q(l;xl-  1)-+C(1+x1 +1,s)$( l ;x1+l) ,  

(2.20) 

where to include correctly the values x1 = 1, N on the left-hand side of this equation, 
we make the supplementary definitions 

w ;  0) = w - 2 ;  NI, I)(/; N +  1) = $(1+2; 1). (2.21) 

If 4. is even, one has the very simple n = 0 states (2.9). From (2.18) and (2.19) one finds 
at once Baxter's (1973) result, 

%Ylc/ (I )  = 0, (2.22) 

that is, that the n = 0 states in the X Y  case are all zero energy eigenstates. For the 
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case n = 2 we may write 

x X Y $ v ;  x17 x2) 

= ( A ( I + x , , s ) + A ( I + x , , s ) ) $ ( l ;  x1,x2)-~C(I+x1,s)$(1; x1-1,x2) 

-$C(l+x1+1,s)$(l; x , + l ,  X2)-+C(I+X2,S)$(1;X1,X2-1) 

-+C(l+x2 + 1, s)$(/; xl, x2 + 1). (2.23) 

Again, to fit the cases x1 = 1, x2 = N ,  and x2 = x l + l  on the left-hand side of the 
equatio:: we need the supplementary definitions 

$ ( I ;  x1, X I )  = 0, 
$V;O.xJ = $ ( / - 2 ; x 2 , N ) ,  (2.24) 

$ ( I ;x l ,N+1)  = $(/+2;  1 , ~ ~ ) .  

3. Bethe-type eigenstates for n = 1, 2 

From these Baxter familes of vectors for each allowed value of n we can now form eigen- 
vectors of Xxy.  This is essentially the same calculation which Baxter (1973) has done 
generally for the eight-vertex model transfer matrix, but it is much easier to follow if 
we do it specifically for . Y X y .  We will carry out the calculation explicitly below in the 
cases n = 1 (+N odd) and n = 2 (+N even). 

For simplicity, let us begin with the I I  = 1 (fN odd) case. Since P, commutes with 
-HXy we may work in the two subspaces W ,  = P? Wseparately by defining 

(3.1) 
Because of the overcompleteness of the states $ we may choose either / = 1 or I = 2 
in (3.1). To be definite, let us choose E = 1 at this stage and later we can get the 1 = 2 
result by merely shifting s to s + K .  Remembering that 

$ + ( [ ; X I )  = P,$(j;xJ = ~ ( $ ( / ; x l ) ~ ~ ( I + 2 : x l ) ) .  

A(! + 2, s) = A( / ,  s) and C(I+2, s) = a/, s) 

we get from (2.20) 

;Y%;;Y$,(l ; x1) 

= A(x1-1.S)$,(1;x1)-~C(x1-1,s)$,(1; xl- l)-+c(xl.s)$,(l; x , + l ) .  

(3.2) 
Now try to find an eigenstate "(4) of .Txy such that 

(3.3) 

(3.4) 

If  we put (3.4) into (3.3) and use (3.21, we may equate coefficients of I)+( - 1, xl) on either 
side of the equation to obtain, for x1 # 1. N .  

# y(1) - E(l'y(1' 

y(11 - 

XY + - i * 2  

N 

?r - 1 g+(x, .s)$+(1;x,) .  
x , = 1  

Ey'g,(xl, s) = 4 x 1  - 1, s)g,(x, 5 s ) - f C ( x , ,  s)g,(x1+ 1, s)-+c(xl- 1, s)g,(x1- 1,s). 

(3.5) 
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If we introduce the ratio of coefficients 

(3.5) becomes 

E':) = A(x, - 1, S)-&(X1, S ) f k ( X l ,  S)-iC(X1- 1, s)(l/'f+(x, - 1, s)). (3.7) 

This is now a kind of recurrence relation to be solved for f*(xl,  s) in terms of E(:). As 
shown directly in appendix 2, or by referring to Baxter's proof in general for the eight- 
vertex model (Baxter 1973), the solution of (3.7) is given by 

where the parameter U '  is related to E(:) by 

and the function G(u) is defined? by 

1 cn(u, k )  dn(u, k )  
k sn(u, k )  

G(u) = 7 3 

or 
H ( c  + ? / ) @ ( U  +'I) 

G(c-q) = 
H( U - 'I)@(c -7' 

(3.9) 

(3 .10~)  

(3.10b) 

where H and 0 are Jacobi theta functions, 'I = i K  as in (1.4) and U is Baxter's transfer 
matrix parameter, related to U by U = U - ' I .  Following Baxter (1973) define wave- 
numbers q' by the relation 

H ( U ' + ' I ) @ ( U '  +'I) 
H(U'-'I)@(u* -'I) 

G(u') = G(o' -'I) = = exp(iq*). (3.11) 

Then a simple argument based on the theorem that there is an algebraic relation between 
any two elliptic functions with the same periods (Whittaker and Watson 1965) leads to 

(3.12) 

a form familiar from the usual quasiparticle solution. Because G(u) is of order two 
(Whittaker and Watson 1965), for every value of q* in (3.1 1) there will be two possible 
values for U'. As explained in appendix 2 we choose those U' which lead to the square 
root in (3.12) being always positive. If we now fix 

E ( ' )  j: - - (cos'q' + k 2  sin2q')"'. 

g,(l,s) = g(l,s,u') = G(u') = exp(iq'), (3.13) 

then from (3.8) we have for x1  odd, 

g(x,, s, U') = exp(iq*x,) (3 .14~)  

and for x1  even, 

g(x,, s, U') = -iG(u'+$K'+s)exp(iq'x,). (3.14b) 

t The function G(u) was introduced in connection with the X Y  model by J G Valatin. 
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As yet, U *  and the associated wavenumbers q' are undetermined parameters. The 
allowed values of q' are fixed by a boundary condition which follows from looking 
explicitly at the terms in (3.3) and (3.5) when x 1  = 1, N. From (2.21) we see that 

$*(I ; ( ) )  = T $ * ( l ; N ) ,  $ d l ;  N +  1) = T $ * ( l ;  11, 
hence from the ends of the chain arise two equations, 

E") g(1, S, U ' )  = 4 0 ,  s)g(l, s, u*)-)C(l, s)g(2, S, u*)+)C(N, s)g(N, S, U'), 

and 

E',"g(N,s,u') = A(N-l,s)g(N,s, u')+)C(O,S)~(~,S,U')-)C(N- l , s ) g ( N - l , ~ , ~ ' ) .  

We satisfy these as well as (3.5) if we impose the boundary condition 

g(xl + N ,  s, U') = Tg(xl, s, U*), (3.15) 

equivalent to 

exp(iq*N) = T 1. (3.16) 

Thus in each of the two subspaces W, we get the usual set of wavenumbers. In W+ we 
have 

71 3n 5x ( N  - 1)7t 
q+ = +- +- +--,..., *--- N ' - N ' - N  N '  

while in W- we have 

27t 47c 
' - N ' - N  

q-  = 0 +- +--,..., 

(3.17) 

(3.18) 

Next let us consider the case that )N is even so that there is a Baxter family of n = 2 
states. Once again define 

$*(/; 3 ~ 2 )  P*$( / ;  ~ 1 ,  ~ 2 )  = ) ( $ ( I ;  x 2 ) f  $(1+2; X I ,  ~ 2 ) ) .  (3.19) 

and, as above, choose I = 1. Then from (2.23) we have 

. f x y $ * ( l ; x 1 + x 2 )  = ( ~ ( x , - 1 , s ) + A ( x 2 - 1 , s ) ~ , ( 1 ; x 1 , x 2 )  

- m x ,  - 1, s )$*(l ;  X I  - 1, X2)- )C(X1,  s)$*(1 ; x i +  1, x2) 

-)C(X, - 1, s)$*(l; x11 x2 - 1)-4C(X2, s)$*(l; x l ,  x 2  + 1). (3.20) 

Again try to form an eigenstate such that 

(3.21) f yc2, - E'2""2' 
' X Y  ' - f * ?  

(3.22) 
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If we try h , ( x l ,  x2) = g(x,, s, u:)g(x2, s, U:), we find a solution of (3.23) with 

1 1 +- E'2' - ' - sn(2u:) sn(2ui)' 

However, h,(x,, x2) = g(x,,  s. ur)g(x,, s, u:j is also a solution of (3.23) with the same 
value of E?'. - Therefore we may choose as a general solution of (3.23), 

h,(x1.x2) = cI2g(xl. s. U:)g(.x,.s. U:)+c21g(x1.s. u?)g(x,.s, U : ) ,  

where the constants c1, and c21 are chosen in the usual way (Bethe 1931) to ensure that 
(3.23) is valid also when x2 = x1 + 1. This gives the familiar consistency condition 

hi(Xl .Xl)+h ' (X,+l .X1+lj  = 0, (3.24) 

which tells us that c12 = - c21. Thus a solution valid even at x2 = x1 + 1 is 

h,(xl. x2) = g,(.x,, s. u:)g,(x,, s, u;)-g,(xl, S, U ; ) ~ * ( X , ,  S, U : ) .  (3.25) 

To determine U :  and U ;  we use boundary conditions arising from the terms involving 
$ , ( I ;  I , X , ) , $ ~ ( I ;  1.N) and$,( l ;x , ,Njin(3.21) .  One findsthat 

h,(x,+N,x,) = h,(x, ,x,+N) = 7 h,(x,,x,), (3.26) 

which leads to the same wavenumbers in each of the subspaces W, that we determined 
previously in (3.17), (3.18) for n = 1. 

One could now proceed to construct eigenstates out of the other allowed Baxter 
families (n = 4,6,8, .  . . . N for i N  even) in the usual Bethe (1931) manner. This procedure 
would give straightforward generalizations of (3.22) and (3.25) in which we would have a 
superposition of Baxter states, each with n down 'spins', with coefficients like (3.25) which 
would be given by determinants of the single particle functions g(x, s, U'). In such fashion 
we could find a complete set of eigenstates for PXy. However, the fact that we find 
determinants of the single particle functions g(x, s, U ' )  implies that the eigenstates are 
made up of fermion excitations and suggests that the Baxter solution is closely related to 
the familiar diagonalization of XXy in terms of fermion quasiparticle operators. 

It is worth emphasizing that this Bethe-type solution is carried out with the parameter 
s held fixed. If now we vary s, the energy eigenvalues do not change but the eigenvectors 
move in the 2" dimensional space W. The parameters thus is related to  the existence of 
degeneracy among the eigenstates of XXy.  At present we will not consider further this 
problem of degeneracy, but it should be possible to examine it in detail for the X Y  model. 

4. Operator expression of the Baxter states (&"even) 

Thus far the parameter s has been undetermined apart from requiring it to be real. When 
we illustrated the Bethe-type eigenstates above, we used states $ ( l ;  x,, . . . , x,) with 
1 = 1,3 as the basic set. The results of 9 3 also contain the choice 1 = 2,4 if we shift s to 
s + K .  To obtain a simple operator form of the Baxter solution it is now convenient to fix 
s at the value s = 0 in all subsequent considerations. We will also examine the case 
that i N  is even, so that henceforth we will consider Baxter families corresponding to 
n = 0 , 2 , 4  , . . . ,  N .  
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The basic idea of this section is to show that the n # 0 Baxter states arise by the action 
of simple operators upon the four n = 0 states. With s = 0, the four n = 0 states are 

First consider the 1 odd states. I = 1.3 .  Define, for x1 < x2,  an operator M(x,, x2) by 

M(x, ,x , )  = (-l)xz-x'- t  (g:l +(- lYIOil) + lg:l + 2  . . . a:2- l](c:2 - ( -  1Y2gi2). (4.2) 

Remembering (2.12) and using 

(4.3) - 
~ ~ l , , l , +  1 - (Pl ,+2,1,+ 1 

$ ( I  ; X I ,  X2) = M(x1 5 XZ)$(l). 

N(x, ,  x2) = ( -  l y x l -  (dl -( - l)"'a,) [el + la:l + 2  . . . - 1 1  (ax: +( - 1YZcJ. 

$0; x12 x2) = N(x1 5 x2)$(1). 

i~:cpI,,I,+ 1 = cpI,,l,- 1 

one sees by inspection that for 1 odd, 

Similarly, for 1 even and x1 < x2 ,  define 

(4.4) 

Again one sees that for 1 even, 

Now introduce fermion creation and annihilation operators cj, cJ by the Jordan- 
Wigner transformation, 

m =  1 m =  1 

It follows at once that 

M(x, 3 x2) = (CXl - ( -  l)x'c~l)(c,z - (-  1)xzc:2), 

N(x1,x2)  = ( C , l + ( - 1 ) X ~ C : 1 ) ( C x 2 + ( - l ) X ~ C : 2 ) .  

This result suggests the introduction of hermitian operators a j ,  bj by 

iaj = exp( - $inj)cj - exp()inj)cj, 

bj  = exp( - +i7cj)cj + exp(+izj)cJ. 

{ a j ,  aj , }  = { a j ,  b,,} = {b j ,  b,.} = 0, 

These operators anticommute at different sites, 

j # j ' ,  
while on the same site 

a2 = b2 = 1 { a j , b j }  = 0, ~ j '  

(4.5) 
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In terms of a j ,  bj, (4.6) becomes 

W x , ,  x,) = exp{+in(x, +x, +2)}axlax2, 

N(xl, x2) = exp{qi4xl +Xz))bXlbX2. (4.10) 

Now we can express the Baxter states for n = 2,4,6,. , . , N in the following manner. 
For I = 1,3, and remembering x1 < x, < . . . < x,, 

$(l;x1, x, , .  . . ,xn)  = exp{)in(x, +x,+ . . . +~,+n)}a,~u,, . . . aXn$(O, (4.1 1) 

while for I = 2,4 

$ ( l ;  x l ,  x,, . . . , x,) = exp{)in(x, +x, + . . . +x,)}bX1b,, . . . bxn$(I). (4.12) 

These simple operators aj and bj when used in pairs serve to turn down pairs of the 
Baxter 'spins' which are all up in the n = 0 states. It is of interest therefore to express 
Ye,, itself in terms of a j ,  b,. First make a decomposition 

ADxr = Y?jlf:P+ +XOj;y)P-, (4.13) 

where Y?'&) (after the Jordan-Wigner transformation) is 
N 

-2jliY) = -+ 1 ((CjCj+ 1 - CJfCj+ 1) + k(CjCj+ 1 - CjtCj+ ,)}. (4.14) 

In (4.14) one has the convention that for the upper (lower) sign in .Y?"y) the c j  satisfy the 
anticyclic (cyclic) boundary condition c j +  = f c j .  If we invert (4.7), 

j =  1 

c j  = 3 exp(3i7cj)(bj + iuj), 

cf = 3 exp( - iinj)(bj - iaj), (4.15) 

we can then obtain 
N 

X'Lfy) = ai E [f 1 + ( - l)xk}axux+ + { 1 - ( - l)Xk}b,b,, 1], (4.16) 

where for the upper (lower) sign of &'"Iy': the a, and b, satisfy the anticyclic 
(cyclic) boundary condition From (2.19) one sees that 
{ 1 +( - l)"k} = C(x, 0). Thus if we denote C(x, 0) by C(x) we have 

x =  1 

= Tax ,  b,+, = fb,. 

(4.17) 

5. Operator diagonalization of Sxy 

We wish now to diagonalize &'k'y) in the form (4.17) by a kind of Fourier transform 
method. Before doing this, however, let us briefly recall the standard diagonalization 
(Lieb et a1 1961) of A?:$.) in the form (4.14). In each subspace W, introduce Fourier 
transforms of the Jordan-Wigner operators, 
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where one uses the wavenumbers q+ of (3.17) and (3.18) in the corresponding subspaces 
W+ . In terms of the qq we have 

Make a Bogoliubov-Valatin transformation (Bogoliubov 1958, Valatin 1958) to quasi- 
particle operators defined by 

(5.3) 

(5.4) 

ti = cos()y,)~( - i sin(+yq)q-,, 
tan y ,  = k tan q. 

Then (5.2) becomes 

2;;’ = Eq( t ; t , -cq t - , -  l)+(t&-5:5,- 1). (5.5) 
O < q - < n  

with E,  = (cos2q+k2 sin2q)1’2 as in (3.12) with the positive square root taken at all q 
values. 

We would like a similar result for (4.17) and it is easily attained if we note that, when 
s = 0, the factor iG(u+s+$K’) in (3.14) becomes 

cos q + i k  sin q 
iG(u + iiK’) = = exp(iy,), 

E,  
where yq is the angle introduced in (5.3). To prove (5.6) is a simple exercise using the 
elliptic properties of G(u) together with (3.11) relating q to U and (3.9) expressing E ,  in 
terms of U. At s = 0, (3.14) becomes for x odd, g(x, 0, U) = elqx, and for x even, 
g(x, 0, U) = - exp(iy,) exp(iqx). Therefore when s = 0 we may redefine these single 
particle wavefunctions by multiplying g(x, 0, U) for all x by the phase factor i exp( - ity,) 
to get for x odd, 

(5.7) p(x,  U) = p ( x ,  q )  = exp(+in) exp( -+iy,) exp(iqx), 

p(x ,  U) = p(x ,  q )  = exp( -tin) exp(+iy,) exp(iqx). 

E,p(x ,  4 )  = -~C(X)P(X  + 1, q)-iC(x- l)p(x - 1, q) ,  

and for x even, 

(5 .8)  

In terms of p(x, q), equation (3.5) becomes 

(5.9) 

where, as in 0 4, C(x) denotes C(x, s) at s = 0. Now use the single particle wavefunctions 
p ( x ,  q)  to define an operator a,‘ by 

(5.10) 

Since the N operators a, are hermitian, it does not follow that there are N inde- 
pendent a;. In fact, from (5.6) it is evident that Ĵ, = - y - q  and y q - n  = y,-n, hence 
A x ,  4 - 4 = - ip(x, q),  and 

a;-, = -ia,t. (5.1 1 )  
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Thus in each subspace W ,  , as we take the appropriate wavenumbers q', we obtain i N  
independent a,' together with the corresponding 4 N  adjoints. Let us choose the inde- 
pendent set of operators t o  be those operators with positive wavenumbers, q* > 0. 
These a,' are proper fermion operators with anticommutation relations 

These commutation rules are easily verified using 
h 

1 ( - I)'p(x, q)p(x.  4 ' )  = 0. 

p ( x .  q)p*(x. q') = Nd,,,,. 

I =  1 

2 

, = I  

(5.12) 

(5.13) 

where both q and q'are chosen either from the q+ or from the q -  in (3.17) or (3.18). We 
have already seen that the operators a, can be used in pairs to create the n # 0 Baxter 
states from the n = 0 states when I = 1, 3. The operators a,'. aq will do the same thing if 
applied in pairs to the n = 0 states. 

Had we chosen the even 2 states. I = 2,4. at s = 0, we would have needed the b ,  
operators to turn down the Baxter 'spins'. Therefore introduce another set of single 
particle wavefunctions by 

p(x, q )  = exp( -+in) exp(ii7,) exp(iqx). 

p(.u. q)  = exp(ii7r) exp( -+ili),) exp(iyx), x even. (5.14) 

.Y odd, 

These functions satisfy 

E$(?(, q )  = -1 'C(x+ I)P(x+ 1, q)- iC(x)P(x-  1.4). (5.15) 

We may define another set of operators by 

(5.16) 

Again only i N  of the p,' are independent since 

= $,'. (5.17) 

The normalization properties (5.13) hold also if  p is replaced by p .  so that we have 
anticommutation relations identical to (5.12) for the /3,' and because of (4.8) and (4.9), 

'U+. ( 4  p;.} = ;a,', p,,} = f c d  , , , p,' ) = (U,. B,.) = 0. (5.18) 

Both the a,' and the /3: are closely related to the N independent quasiparticle operators 
t:. To see this we may use (4.7) and (5.10) together with (5.8) and (5.1) to obtain 

Remembering that y q - n  = y,-n and using (5.3) we have 

1 ,  + 
Zt = --<; +7L&r. 

4 ' 2  \/2 
(5.19) 
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Similarly for pi we find 

(5.20) 

Thus the x i .  p,' are simple mixtures of quasiparticle operators arising from a unitary 
transformation on the degenerate ( E 4  = E,-*) pair of operators <,'. &-,. Now it is 
trivial to diagonalize SY (&j in terms of x i .  p,' either by substituting in (4.17) 

(5.21) 

and using (5.9) and (5.15). o r  by solving for t,' from (5.19) and (5.20) and then using (5.5). 
Either way we get a simple result, 

(5.22) 

6. Baxter states in terms of the quasiparticle states 

In this section we wish to  indicate in some detail the relationship of the quasiparticle 
states of the standard solution to the Baxter families and to  the Bethe-type eigenstates 
formed from these families. Let us briefly recall the eigenstates of .Ue,, obtained by the 
standard quasiparticle diagonalization. In each subspace W ,  one defines a quasi- 
particle vacuum state. To d o  this, introduce the state with all spins turned down, 

(6.2) 

(6.3) 

The operator q: occurs unpaired with any other in (6.3) because from (5.6) y n  = TI and 

of qq excitations while in W- we have only states with an  odd number of qq excitations. 
Remembering the difference between a ic  and @v;c above, one sees that in W, the eigen- 
states of Xxr correspond only to those states generated by even numbers of quasiparticle 
operators acting on  the respective vacua. States generated by odd numbers of quasi- 
particle operators are not eigenstates of -?ifxy and must be discarded. 

We can give an  analogous description of the Bethe-type eigenstates of 4 3 in terms of 
operators U: ,  t lq, or  pl, p,. acting upon the n = 0 Baxter states. We will discuss in detail 
how this is done only for the a,', x q ,  operators acting upon the odd [ ( I  = 1.3) Baxter 
states with n = 0. The interested reader may easily d o  a similar calculation for p i .  p,. 
acting upon even I ,  n = 0 states. 

Ft - - - iq,. Since P ,  W,  = 0, in W+ we have only states corresponding to even numbers 
i n  
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In (4.1) we explicitly wrote the four n = 0 states at s = 0. We are interested in $( 1 )  and 
$(3) which are easily expressed in terms of @down by 

(6.4) 

If  we define in wavenumber space the operator 

P, = cosy,++i sin ~ , ( q ? ¶ - q ~ - , ) ( ~ i - q i - ~ ) ,  

then as shown in appendix 3 we may express (6.7) as 

yyc,") = [ n Pq)@down? 

y'o' = [ n Pq) (5) (qt n j 2  - Y]nj2)@ddown. 

O < q +  < n / 2  

(6.9) t 

o < q -  < n / 2  

From (6.9) it is straightforward to express in terms of @&. Define the operator 

S, = ifsin(+j',){i + sin(+yq-n)(i-n} {sin(+?-,)(?, + sin(iyn-q){L-q}. (6.10) 

Then one finds 

qA0)  + - - ( n S q ) @ L  
O < q +  < n / 2  

(6.11) 

(6.12) 
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From (5.19) and (5.20) it is immediate that 

a$, + @, = t: 4, +- 4; - . 4, - n, 
and from (6.10) and (6.11) follows 

(ai., + p;p,)Yy' = Y':'. (6.13) 

Looking at (5.22) we see yet again that Y(:) is a zero energy eigenstate of .f iy. However, 
these n = 0 states are not eigenstates of the operators @:a, and j ; j 4  separately, nor 
are they eigenstates of <:(,. Rather we have the following simple expectation values for 
these operators : 

(Y$", ct:a4Y$") = (Y$", #p,Y$") = 3, 
(y(:), (l(,Y(,O') = sin2(' 21/,), (6.14) 

where q takes values appropriate to the respective subspaces W , .  
I t  is evident from (6.14) that the n = 0 states Y(:) are not vacuum states for the 

operators a, or /?,. . Nonetheless, in terms of the operators ai, cl,. and the states YY), we 
can give a complete set of eigenstates of .$xy corresponding, apart from phase, to the 
Bethe-type eigenstates of 6 3 evaluated at s = 0. Out of the N distinct operators ai, a,, 
take all possible pairs and then act with 0, 1, 2,. . . ,+N pairs on '€'(!I. This procedure will 
produce 2N- independent states in each subspace and 2N in the whole space. In doing 
this one must remember that, since Y(:) is not a vacuum state for a,, even an operator 
like a$, will produce an independent state when applied to '4'':'. In this manner one 
can give a complete set of states without any reference to excitations. The Bethe 
solution state "(2) of 9 3 would at s = 0 be simply expressed as 

YY)(qI, q2) lS=, ,  = -expfti(y,, + y q 2 ) } a i , a ~ , ~ ( : ) 3  

where the phase factor arises from the phase difference between g(x, 0, U) and p ( x ,  U). 
There would be corresponding expressions for other Bethe-type wavefunctions. I t  is 
evident that a very similar description of states in terms of p,' excitations could be given if 
we had initially used Baxter states with I = 2,4. Such states would have been simply 
related to the Bethe-type states at s = K .  

Using the relations above between the quasiparticle vacua and the n = 0 Baxter 
states Y(:) one may now translate completely the Baxter solution for the X Y model at 
s = 0 into the quasiparticle language of the standard solution. One of the most interest- 
ing features of the Baxter solution as sketched above for the X Y model is the fact that the 
basic states can be taken to describe real 'spins' which are rotated from site to site along 
the chain. I t  will be interesting to examine the effect of an external field applied to these 
'spin' arrays in the X Y  model. I t  will also be of interest to apply the Baxter solution as 
outlined above to the free-fermion model (Fan and Wu 1969, 1970) which has recently 
been cast into an elegant operator form in terms of quasiparticle operators (Felderhof 
1973). This work, however, along with applications to the X YZ model, we reserve for 
later publication. 
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Appendix 1 

Our aim here is to sketch first how one obtains the normalization properties (2.16) and 
(2.17) for the states $ ( I :  x , ,  x,, . . . , x,) and secondly how one derives the action of 
.Y?~,~+,  as given in (2.18). The result (2.16) follows immediately from the definition (2.2) 
of the up and down Baxter ‘spin’ states on each site. Consider two states of the same I 
value, $ ( I ;  xl ,  x,, . . . , x,) and $ ( I ;  y , ,  y, ,  . . . , yJ which may also be written as 

$ ( I ;  x,, .Y,, . . . , x,) = $ ( I ,  3 I ,  3 I ,  1 . . . 1 I,, I,+ ,Ir 
$(I;.Y, .y,  . . . .  1 Y m ) = $ ( l , , l ; , l ;  . . . .  1 l k . I k + , ) ,  

where I ,  = I in each case, but the 1; may differ from the l j  for j # 1. Since these are direct 
product states we start with site 1 where (p11 , f2  and ~ p ! , , ~ ~  occur. If one of this pair is an up 
‘spin’ and the other a down ‘spin’ then they have zero scalar product and $ ( I ;  x1 , . . . . x,) 
and $ ( l ;  y ,  , . . . , y,,,) are orthogonal. If these two ‘spins’ are both up or both down then 
I ,  = 1; and they contribute a factor one in the scalar product and we move to site two 
to look at (p12 ,13  and (p12 ,1 j .  On site two the same possibilities apply and thus we may move 
from site to site along the chain until we reach the end or reach a site where one ‘spin’ is 
up and the other ‘spin’ is down making $ ( l ;  x,,  . . . , x,) and $ ( I ;  y , ,  . . . , y,,J orthogonal. 
We conclude that these two states are orthogonal unless I j  = I; for all j in which case 
n = m, x, = y , ,  x, = y, ,  . . . , x, = y,, and we have proved (2.16). 

Next consider two states whose 1 values differ by two, $ ( / ; x , , . .  .,x,) and 
$(1+2; y , ,  . . . , ym). Again we may write these as 

$ ( I ;  
$ U + 2 ; y , , . .  . , y m )  = $ ( I ; , / ;  , . . . ,  I;+,,. 

. ,  x,) = $(i, > 1, - .  ‘ ’ 3 EN+ 1x 

We first note that these states are orthogonal if n # m. To see this, assume m 3 n + 2 
(if n 2 m+2 we can shift 1 to / +4  in $ ( I ;  x,, . . . , x,) and carry out the argument in 
the same way). If m 2 n+2, then 1; = / + 2  > I ,  = I ,  but at the end of the chain 
/h+, = 1+2+N-2m < I N + ,  = / + N - 2 n .  This is to say, the two sequences 
I , ,  I , ,  . . . , I,, and rl, I ; ,  . . . , l;,+ , cross over somewhere along the chain. Let j be the 
last site on which l j  = 1;. Then v ~ ; , ~ ; + ,  is a down ‘spin’ while ~ p ~ ~ , ~ ~ +  is an up ‘spin’ and 
they are orthogonal making the two product states orthogonal as well. 

Assuming n = m, we now must show that $ ( / ; x , . .  . . ,x,) and $ ( / + 2 ; y 1 . .  . . ,y,) 
are orthogonal unless x i  = yi for all i. First suppose y1 < x1  and write again 

$ U ;  x,,x,.. . . 3  x,) = $(4 , / , , .  . . 3  I ,+ , ) ,  

$ ( 1 + 2 ; y , , y , , .  . . .  Y,) = $ ( I ; , / ;  , . . . ,  I ; + , ) .  

Then I ,  = I <  l‘, = 1+2, I ,  = / + I  < I ,  = /+3, . . .  but l y l + l  = l + y ,  = that is, 
the two sequences I , ,  I,, . . . , I,+, and I ’ , ,  I ; ,  . . . , I ; + ,  have a common element at site 
y , + 1 .  Since I ,+, = I + N - 2 n  < l a + ,  = /+2+N--2n, the sequences must again 
separate. At the site where the separation occurs there will be an up ‘spin’ in one state. a 
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down 'spin' in the other state, making the two states orthogonal. If  y,  > x l ,  write 
$ ( I ;  x l , ,  . . , x,) = $( /+4;  x l , .  . . , x,) and repeat the same argument to conclude that the 
states are orthogonal unless J = x l .  Assuming y1 = x1 move on to repeat exactly the 
same argument for x 2 ,  y 2 . .  . . , x,. y,. 

Finally, assuming n = m. x, = y ,  for all i. we need to calculate ($( / :x1. .  . . . x,). 
IC/( 1 + 2 ; x . . . . . x,)). Referring to (2.2) and recalling p ( l  + 2, s) = - p(  1. s) one sees that 
two up 'spins' at site j contribute a factor 

while two down 'spins' contribute the same factor. 

( ' P I , , l , -  1. 'P1,+2,1,+ 1) = ( ' P I J . l J +  1 * ' P l J + 2 . 1 , + 3 ) .  

Thus 

Remembering (2.8) we see that 

1 - p 2 ( 1 ,  s) v2 1 - p 2 ( 1 +  1, s) 2. 

i l  + P V .  s)) i 1 + $ ( I +  1, s) 1 ( $ ( I ;  X I , .  . . X"), $(1+2; x l , .  . . , x,)) = 

However it is trivial to show that 

1 - p 2 ( I +  1. S) 

1 + $ ( I +  1. s) 
1 - k  
1 + 

giving the result (2.17). 
To establish (2.18) is not difficult but it is rather tedious in detail. Let us sketch the 

procedure for (2 .18~)  where we want to evaluate X;, j+lqlJ , lJ+l  0 q l J + l , l J + 2 .  Since 
.z~,~+ = +( 1 + k)<<+ +$( 1 - k)+;+ 1, and since from (2.2) 

OX'Pl,I+ 1 = ' P I  + 2,l  + 1 3 

iOY'Pl , l+ l  = ' P l , l - l >  

+%3,1- 1 = ' P / - 2 , / -  15 

iflY'Pl,l - 1 = -vu+ 1 > 

we have 

1 
~ , , + 1 ' P l , , 1 , + 1 0 ' P ~ , + 1 , 1 , + 2  = i ( 1  +k)'P1,+2,1,+1 0 ' P l J - 1 J J - 2 - ~ ~  -k)'P1,,1,-1 0 ( P l , + l , I , .  

0 ' P l , +  1 ,1 , ,  ' P I , , l , -  1 0 ' P I , +  l , l J + Z >  and 'PI,J,- 1 0 ' P I J +  l , l J .  Thus we may certainly write 

4,,+ l 'PIJ,lJ+ 1 0 PI,+ l , l J + 2  

= D l ( P I , , l , + l  0 ( P I , + 1 , 1 , + 2 + ~ * c p l , , c , - 1  0 ( P l , + 1 , l , + 2 + D 3 ( P I J , 1 , + I  0 % , + l , I J  

On sitesj and j + 1 we are working in a four-dimensional subspace of W. An orthonormal 
basis in this subspace is given by the four Product states ' P I ~ , I , +  1 @ 'P I ,+  1 , 1 , + 2  5 'PI , ; I ,+ 1 

+D4(P1,,1,-1 @ ~ I , + l , l , ~  
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where by orthonormality in the two site subspace 

D, = 3 1  + k ) ( ( P I J . l J + l ~  ( P 1 , + 2 , I J + 1 ) ( ( P I , + l , l , + 2 ~  ( P I , - l , l , - Z ) ~  

D2 = $1 + ~ ~ ~ ( P l J , l J - l ~ ( P l J + 2 , l , + l ~ ~ c P l J + l , l ~ + z ~ ( P l J - l , l J - 2 ~ ~  

D, = f ( l  + ~ ) ( ( P I J , l J + l ~  ( P 1 , + 2 , ~ , + 1 ~ ~ ( P 1 , + 1 , l , ~  ~ l , - l , 1 , - 2 ) ~  

D4 = 4 ~ ~ + ~ ~ ~ c P I , , l , - 1 ~ ~ l J + 2 , 1 , + l ~ ~ ( P I , + 1 , 1 , ~  (PI , - l , l , -2)-~(1-~)~ 

Evaluating the scalar products by (2.2) one may show that D, = A( /J ,  s), D, = B(lJ ,  s), 
D, = -B(I,+1,s),D4 = Oasin(2.180). Theeffectof ~ J , J + l u p o n ~ l , , l , - l  0 (PlJ-l,lJ-2in 
(2.18d) is obtained in exactly the same manner. 

For (2.18b) and (2.18~) one proceeds in two steps. First one shows 

;',,+ l ( P I J , l J +  I 0 ( P I , +  1,1, 

= - 4 p ) ( P l J , l J + l  0 ( P I J + l , l J + ~ ~ - ~ ~ c P I J ~ l , - l  0 (Pl,+1,1,+2 

- w,, 4 c P I , , l , -  1 0 (PI ,+  1,1, - w, + 1, S)(P1,,1,+ 1 0 (PI,+ 1JJ+  2 

= -A(l,-l?~)(PIJ,lJ-l 0 cPIJ-l,l,+(l--~~I,,I,+l 0 (PI , - l , l , -2  

-wJ, s ) ( P I , + l , + 1  0 (PI,-lJ ,-Q- 1, 4 ( P l J , l J - l  0 ( P l J - l , l J - 2  

(1 - k)cp,- 1 , I -  2 - - 1,l = C(L S ) ( P I +  1 , 1 3  

(1  - k)cpl+ l , l +  2 - 2B(L s)cP, + 1.1 = C(L s)cP1 - 1, l '  

and 

q , J + l ( P l ~ , f ~ - l  0 V I J - ~ , ~ J  

in exactly the same way as above. Then the identities 

and 

lead at once to (2.18b) and (2.18~). 

Appendix 2 

Let us first give a proof that (3.8) and (3.9) constitute a solution to the recurrence relation 
(3.7) and then let us examine the function G(u) of (3.10) to see what values of U satisfy the 
boundary condition (3.16). As a function of U, the elliptic function G(u) is doubly periodic 
with periods 2K, 2iK' and is of order two. From (3.104 it is trivial to verify the following 
properties of G(u) : 

G(u) = - G( - U ) ,  G(u+K)  = - l/G(u), G(u + iK') = - G(u). (A. 1) 

We want to establish that the functions E(u) = l/sn(2u) and f ( x ,  s,u) = 
iG(u)/G(u +$K' +s + x K )  of (3.8) and (3.9) satisfy the relation (3.7), 

E(u) = A(x-  1, s)-$(x, s ) f ( x ,  S, u ) - $ ( x -  1, s ) / ~ ( x -  1, S, U). 

l/f@ - 1, s, U )  = f ( x ,  s, U)/G2(U)? 

64.2) 

From (A. 1) we have that 

and using the definition of A(x,  s), C(x, s) and simple elliptic properties, we can express 
(A.2) as 

(A.3) E(u) = - k sn(2s + 2xK) + R(x, s, U) 
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x {2G(u + )iK' + s + xK)} - '. 
Now examine the two sides of (A.3) with x, s held fixed and consider the u dependence. 
The function E(u) is doubly periodic in u with periods 2K, iK' and it has two poles within 
its fundamental domain at u = 0 and u = K with residues i, -) respectively. It is easy 
to see that R(x, s, U) has exactly the same properties with respect to u if we use the identity 

to help evaluate the residues of R(x, s, U). Therefore the difference E(u)-R(x, s, U) is, 
with respect to U, an elliptic function with no poles. By the Liouville theorem (Whittaker 
and Watson 1965) we conclude that E(u)-R(x, s, U) is a function only of x and s ;  by 
putting U = )iK' one easily sees that E(u) - R(x, s, U) is equal to - k sn(2s + 2xK). 

Because of the boundary condition (3.16) we would like to determine as far as possible 
the values of U* = U *  -&K which satisfy 

H(u' +)K)@(u'++K)  
H(u* -)K)@(u'-- ; K )  G(u* - ) K )  = = exp(iq*) = (T  1)'". 64.4) 

Since G(u) is of order two it will take each such value (A.4) twice within its fundamental 
region defined by the rectangle with corners u = - K - iK', K - iK', K + iK', - K + iK'. 
More generally than (A.4) we may ask for what values of u = U - )K in this fundamental 
domain do we have 

H(u +)K)@(u + i K )  
/ =  1. 

H ( u - ~ K ) @ ( u - ~ K )  

From (A. 1) we see that if u has the values u = -)K + i6, (6 real), then 

G( - ) K  +id) = - 1/G(iK +id) = 1/G( - i K  - id) = 1/G*( -4K + i6), 

and hence IG(u)l = 1 when u = - iK+i6.  Equation (A.1) at once shows that IG(u)l = 1 
also when u = iK+i6 .  In terms of U ,  (A.5) is satisfied along the two lines U = id, 
u = K + id. From (AS) we may learn more. For we may use the expressions (Whittaker 
and Watson 1965) 

where Z(q) is Jacobi's zeta-function and n(v, q )  is the elliptic integral of the third kind 
(Whittaker and Watson 1965). When u = id, then 



948 R B Jones 

is imaginary and, since Z ( i K )  is real, the entire argument of each of the exponentials in 
(A.6) is imaginary. Further, we observe that as 6 increases, 

increases monotonically. 
From these relations we may conclude that when U = - )K  + i6, - K '  6 6 < K'. 

then IG(u)/ = 1 and the wavenumber q, which is the argument of G(u), increases from 
zero at U = -3K-iK'. to TC at U = - i K ,  to ~ T C  at U = -3K +iK'. For the choice 
U = i K  +id, - K' 6 6 < K'. again IG(u) I = 1 and q decreases from n at U = ) K  - iK'. to 
zero at ti = i K .  and to - n at zd = SK + iK'. Since G(u) is of order two, these two line 
segments contain all solutions to (A.4). The energy E(u) is given along these two line 
segments by 

(A. 7) 

In 5 3 we wished to choose the positive square root E, = (cos2q+k2 sin2q)''2. which 
means that we must choose solutions of (A.4) along the line segment U = $K+i6, 
- K '  < 6 < K'.  Once we specify this choice, then all U dependent quantities are uniquely 
determined. 

E(u) = l/sn(2u, k) = 1 /sn( T K + i26. k) = T dn(26, k'). 

Appendix 3 

Here we will indicate briefly how to obtain the form (6.9) for the Baxter states Y$') - from 
the expressions given in (6.7). First consider Y$" given in (6.7) as 

NI2 

'y',") = N + ( I  + k ) - N / 4  C kn'2 ( -  1 ) H j i + j 2 +  ...+ j n - n )  CjlCj, t t . . . 
n = O  j 1  < j 2 < . . .  < j ,  

(n  even) (j, odd) 

We proceed in two steps. First we establish that 
s 2 

I t  is evident that the first two terms on each side of (A.8) are the same. For terms of 
higher order in k we may use a simple inductive argument. First assume that 
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on the right-hand side. Consider a particular term, say C ~ ~ C , ~ ~ . .  . c /2F  where t ,  < t2  < . . . 
< t,, . Such a term can arise from the product of 

with the right-hand side of (A.9) in as many ways as we can choose two operators from 
among the 2r operators ct,, that is, in (i") = r(2r-  1 )  ways. However. some of these 
terms come with a positive sign and others with a negative sign because of the operator 
re-ordering required to reach the standard order t ,  < t ,  < . . . < t,,. There will be a 
positive (negative) sign depending on whether an even (odd) number of factors separate 
the two chosen operators in c ~ , c ~ ,  . . . c : ~ ,  . We may choose pairs separated by an even 
number of factors in (2r  - 1 )  + (2r  - 3) + . . . + 3 + 1 ways and pairs separzted by an odd 
number of factors in ( 2 r - 2 ) + ( 2 r - 4 ) +  . . . + 2  ways. Therefore in the product we will 
obtain c;,c:> . . . c : ~ ,  exactly r times which completes the induction. 

Next consider the operator defined in ( 6 4 ,  

Pq = cos yq++i  sin y ~ ( ~ ~ q - ~ ~ - q ) ( ~ ~ - ~ ~ - n ) ,  

and the normalized state 

' = ( o < q +  n < n / 2  'q)@down. 

The state may also be written as 

@ = ( n exP( t i  1 t a n ~ q ( ~ ~ q - ~ ~ - q ) ( ~ ~ - ~ ~ - n )  
o < q +  < n / 2  o < q -  < n / Z  

However, tan y q  = k tan q, and using (5.1) we obtain 

(A. 10) 

I t  is easy to show that for j ,  . , j 2  odd, and 0 < j ,  - j ,  < N .  

(A. 12) 

Combining (A. 1 1 )  and (A. 121 and then comparing with (A.8) shows that 

The derivation for Y'? is rather similar but with a few changes. Instead of (A.8) and 
(A.12) one now needs 

(A. 13) 
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and 

tan q sin q ( j z - j l )  = ( -  1)~(j1+jz-’){~j2- j l ) -aN}.  (A.14) 
o<q-  < n / Z  

These results can be easily established and lead to the result for Y?’ quoted in (6.9). 
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